منابع مشابه
To Discount or Not to Discount in Reinforcement Learning: A Case Study Comparing R Learning and Q Learning
Most work in reinforcement learning (RL) is based on discounted techniques, such as Q learning, where long-term rewards are geometrically attenuated based on the delay in their occurence. Schwartz recently proposed an undiscounted RL technique called R learning that optimizes average reward, and argued that it was a better metric than the discounted one optimized by Q learning. In this paper we...
متن کاملHow to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies
Using deep neural nets as function approximator for reinforcement learning tasks have recently been shown to be very powerful for solving problems approaching real-world complexity such as [1]. Using these results as a benchmark, we discuss the role that the discount factor may play in the quality of the learning process of a deep Q-network (DQN). When the discount factor progressively increase...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملAdaptive Filtering Strategy to Remove Noise from ECG Signals Using Wavelet Transform and Deep Learning
Introduction: Electrocardiogram (ECG) is a method to measure the electrical activity of the heart which is performed by placing electrodes on the surface of the body. Physicians use observation tools to detect and diagnose heart diseases, the same is performed on ECG signals by cardiologists. In particular, heart diseases are recognized by examining the graphic representation of heart signals w...
متن کاملVisual perception: Learning to see through noise
New studies show that perceptual learning does not reduce the noise inherent to the neuronal mechanisms of perception. Rather, learning boosts the brain's capability to extract and make use of the relevant outside signal - but where and how the neuronal changes occur is still unknown.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2010
ISSN: 1534-7362
DOI: 10.1167/6.6.156